MCH-401:Application of Spectroscopy (Organic) UNIT- 4th: Carbon-13 NMR Spectroscopy

> Prof.Anand Halve S.O.S in Chemistry Jiwaji University Gwalior

C. NMR Spectroscopy

1. General Theory

2. 13C NMR

3. 1H NMR

1. General Theory of NMR

A magnetic field is generated by a spinning charge

The nucleus of many atoms is a spinning charge.

For many nuclei, an external magnetic field will cause the spinning charge to either line up **with** the external magnetic field or **against it**

The β spin state is slightly greater in energy.

The difference in energy between α and β increases with increasing magnetic field strength.

Nuclei can absorb energy.

When nuclei in the α state absorb radiation equal in E to the difference between the α and β spin states, the α spin state is promoted to the β spin state.

The radiation required for "**spin flipping**" has a frequency in the radio wave range

Nuclei can emit energy.

As nuclei move from the β spin state to the α spin state, energy is emitted and the frequency of that energy can be detected.

resonance = nuclei flipping back and forth between the α and β spin state.

Resonance is the "Song of the Nuclei."

Every molecule sings its own song as a result of its structure.

Analysis of an NMR spectrum

may involve analyzing:

a) The number of signals a molecule emits
b) The frequencies at which signals occur
c) The intensity of signals
d) The splitting of signals

2. 13C NMR

a) Number of signals

b) Position of signals

c) DEPT data

a) The number of signals correlates with the number types of carbon in a molecule

cyclopentane

13C-NMR cyclopentane

Pentane

$CH_3CH_2CH_2CH_2CH_3$

13C-NMR pentane

13C-NMR hexane

13C-heptane

13C-NMR chlorocyclopentane

13C-NMR 2,2-dimethylpropanal

13C-NMR 2-methylbutane

13C-NMR toluene

(Z)-3-methyl-2-pentene

(E)-3-methyl-2-pentene

Consider C4H9Br

Which isomers are represented by these spectra?

b) The positions of signals correlate with the extent of shielding and deshielding by electrons experienced by each C nucleus

Diamagnetic Shielding

The greater the electron density around a C nucleus, the lower the effective magnetic field around that C nucleus.

Needs lower frequency for resonance

The carbon nucleus is "shielded"

Carbon nuclei adjacent to electronegative atoms experience a lower e- cloud density

These carbons are "deshielded" and require greater frequencies for resonance.

Chemical Shift

The frequency at which a nucleus will resonate is dependent on the magnetic field strength.

Because this can vary from instrument to instrument, frequency is expressed relative to magnetic field strength, "chemical shift"

Chemical Shift = frequency of resonance (Hz) frequency of instrument(MHz)

units = parts per million = ppm

13C Chemical Shift Correlation Chart

TABLE 13.4 Approximate Values of Chemical Shifts for ¹³ C NMR		
Approximate chemical shift (ppm)	Type of carbon	Approximate chemical shift (ppm)
0	C—I	0-40
8-35	C—Br	25-65
15-50	C—Cl C—N C—O	35–80 40–60 50–80
20–60		165-175
30–40	RO C=O	165–175
65-85	R HO	175–185
100–150	R H	190–200
110–170	R C=O	205-220
	Proximate Values of Cher Approximate chemical shift (ppm) 0 8–35 15–50 20–60 30–40 65–85 100–150 110–170	proximate Values of Chemical Shifts for 11Approximate chemical shift (ppm)Type of carbon0C—I0C—I8–35C—Br15–50C—CI C—O20–60 $R \longrightarrow C=O$ 30–40 $R \longrightarrow C=O$ 65–85 $H \bigcirc C=O$ 100–150 $R \longrightarrow C=O$ 110–170 $R \longrightarrow C=O$ R $R \longrightarrow C$

pentane

hexane

cyclopentane

ethyl bromide

n-propyl chloride

ethanol

2-propanol

ethyl propyl ether

CDS-05-617

Ethyl amine

Acetaldehyde

2,2-dimethylpropanal

Acetone

2-pentanone

acetic acid

Propionic acid

methyl propionate

Acetamide

N-methyl acetamide

1-pentene

(Z)-3-methyl-2-pentene

(E)-3-methyl-2-pentene

2-butyne

Benzene

toluene

Benzaldehyde

c) DEPT data

DEPT = distortionless enhancement by polarization

Distinguishes:

- CH₃ methyl groups
- -CH₂- methylene groups
- I -CH- methine groups
- I -C-I 4_o carbons (not detected by DEPT)

DEPT 13C spectrum of citronella C10H16O

$C_4H_{10}O$

$C_4H_{10}O$

$C_4H_{10}O$

$C_5H_{10}O$

$C_5H_{10}O$

$C_5H_{10}O$

$C_4H_8O_2$

$C_4H_8O_2$

C8H9Br

C8H9Br

C8H9Br

Both C₃H₆O₂

A

B

A

В

$C_3H_6O_2$

B

1H NMR

